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SUMMARY 

In this paper a penalty finite element solution method for the unsteady Navier-Stokes equations for 
two-dimensional incompressible flow is described. The performances of the Euler implicit (El) and the 
Crank-Nicolson (CN) time integration methods are analysed. Special attention is payed to the undamped 
pressure oscillations which can occur when the Crank-Nicolson integration rule is used in combination 
with the penalty function method. Stability and convergence properties are illustrated by means of the 
computation of fully developed oscillating flow between two flat plates. Furthermore, the von Karman 
vortex street past a circular cylinder is computed to demonstrate the behaviour of the time integration 
schemes for a more complicated flow. It is concluded that the EI method has its advantages over the CN 
method with respect to the damping of numerical oscillations. However, for flows with an important 
convective contribution, where physically originated oscillations may be present, the CN method is 
preferable. 

KEY WORDS Navier-Stokes Equations Time Integration Penalty Function Approach Oscillating Flow 
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INTRODUCTION 

A 7-noded (Pl , PI) triangular element (see Figure 1) for the Navier-Stokes equations satisfying 
the Brezzi-Babuska conditions is introduced by Crouzeix and Raviart.’ As indicated by Griffiths’ 
the number of degrees of freedom per element can be reduced from 17 to 13, by eliminating the 
velocity and pressure derivative parameters at the centroid of the element. The resulting modified 
element, together with a penalty function approach to the continuity equation has proved to 
be powerful for the steady Navier-Stokes  equation^.^ In this study the applicability of this 
element for the unsteady Navier-Stokes equations is treated. The performances of the Euler 
implicit (EI) and the Crank-Nicolson (CN) integration schemes are analysed and compared. 
Sani et aL4 mentioned undamped pressure oscillations when the CN-scheme is used in 
combination with the penalty function method. In this paper these oscillations will be related 
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Figure 1 .  The extended quadratic triangular (P;,P,) element and its modification ( x : velocity, 0:  pressure) 

to general properties of the CN algorithm. Experiences with stability and convergence properties 
of the EL and CN-integration will be illustrated by means of the computations of the fully 
developed oscillating flow between two parallel plates. Finally, computations of the von Karman 
vortex shedding past a circular cylinder are compared with data from numerical analysis5 as 
well as experiments.6 

GOVERNING EQUATIONS 

The two-dimensional Navier-Stokes equations for incompressible Newtonian fluids are given 
by the momentum equations together with the continuity equation. In Cartesian co-ordinates 
these equations read (see, for instance, Reference 7): 

aui 2 au. 2 aa.. 
at j = l  l ax j  j = l  axj  p-+ c pu.-=pj-i+ 12, i =1 ,2 ,  

j =  axj 
Here p denotes the density, ui the ith component of the velocity and aij the components of the 
Cauchy stress tensor: 

with p the pressure, 6 ,  the Kronecker delta and q the dynamic viscosity. The boundary of the 
considered region R is denoted by I-. The corresponding boundary conditions which specify the 
physical problem may be a combination of prescribed velocities and stresses in two independent 
directions: 

uj or oi jn j  prescribed on r for j = 1,2, (2) 
with n the outer normal on r. Furthermore, the initial velocity must be given. 
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SPATIAL DISCRETIZATION 

In order to discretize (1) the standard Galerkin method is applied, starting from the weak 
formulation of (1). The velocity and pressure are approximated by a linear combination of time 
independent basis functions qin and i+bm, respectively: 

N 
u! = C uinqia, i = 1,2, (34  

n =  1 

The basis functions qin (i = 1,2; n = 1,. . . , N) and i+bm (m = 1,. . . , M) are used as test functions for 
(la) and (lb), respectively. After use of (3), the following set of non-linear ordinary differential 
equations is obtained: 

(44  

Lu = 0, (4b) 

MU + [S + N(u)]u + L'p = f + b, 

with u a vector of length 2N containing the velocity parameters uin(i = 1,2; n = 1,. . . , N) and p 
a vector of length M containing the pressure parameters p m ( m =  1, . . . ,M). U refers to 
differentiation of u with respect to time. Furthermore M is the mass matrix defined as (k = 1,. . . , N 
and I =  1, ..., N) 

MI1 M12 
M = [ M21 M22] with M'j(k, 1) = paij qikqj ldR,  s. 

S is the diffusion matrix (k = 1,. . . , N and 1 = 1,. . . , N):  

N(u)u is the non-linear convection term (k = 1,. . . , N):  

L is the divergence matrix (m = 1,. . . , N and 1 = 1,. . . , N):  

L =  [L' L2] with L'(m,l)= - i+bmdxidR, 1. 
f is the force vector (k = 1,. . . , N):  

f = [f1f2lT with fi(k) = pfiqikdR s. 
and b is the boundary stress vector resulting from integration by parts of the diffusive and 
pressure terms in the momentum equations (k = 1,. . . , N):  

b = [b' b2IT with b'(k) = oijnjqik dR. s' r j = 1  
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THE EXTENDED QUADRATIC CONFORMING ( P i ,  P,) ELEMENT 

It is a well-known fact that finite elements for incompressible flows must satisfy the 
Brezzi-Babuska condition. This condition is necessary for the consistency of the equations.8 
When applying the penalty function method, the violation of the B-B condition can result in 
spurious (chequerboard) pressure modes.g An example of an element satisfying the B-B condition 
is the extended quadratic conforming (P: , P,) triangular element described by Crouzeix and 
Raviart.' The velocity is approximated by a quadratic function plus some third degree terms 
vanishing on the boundary of the element. The pressure is approximated linearly by the pressure 
and its derivatives in the centroid and hereby discontinuous over the element boundaries (see 
Figure 1). Per element the velocity and pressure approximations then read 

7 

u!= 1 U i n q i n ,  (64 
n =  1 

with 

An(2An - 1) + A'AZA3 ,  

41' A2A3(1 /An-3  - 3), 
1 < n < 3, 
4 < n < 6, 'pin = i A1A2A3,  n = 7, 

*' = 1, 

* 3 = y - y 7 .  

$ 2  = x - x 7 ,  

Here A, are the barycentric co-ordinates of the element (see for instance Reference 8). This 
approximation leads to an error estimate of O(h3) for the velocity and of O(hz) for the pressure.' 
As indicated by Griffiths,' this element with 17 unknowns for the pressure (14 velocity and 3 
pressure parameters) can be modified by eliminating the velocities and pressure derivatives in 
the centroid (see Appendix). The number of unknowns per element is then reduced from 17 to 
13 (see Figure 1). 

TIME INTEGRATION OF THE EQUATIONS 

The time derivative in the discrete Navier-Stokes equations (4) is approximated by a finite 
difference &method. Considering 

this approximation is defined by 

the equation 

u = f, 

with 

f n + e =  w+'+ (1 - elf., o < e < I. 

For Q = O  and 8 =  1 this scheme reduces to the Euler explicit (EE) and Euler implicit (EI) 
methods, respectively, both O(At) accurate for linear equations. For 8 = 0.5 the scheme becomes 
the Crank-Nicolson scheme (CN) which is of O(At2) for linear equations. 
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In order to make a proper choice for the value of 0, the time integration of a linear set of 
ordinary differential equations resulting from the discretization of a parabolic differential equation 
is considered: 

(94 
u(to) = uo. (9b) 

Here A is assumed to be an N x N matrix with real coefficients resulting from a linear elliptic 
differential operator. Furthermore it is assumed that A is non-defect, i.e. has N linear independent 
eigenvectors (If A is defect a more complicated analysis yields almost the same conclusions). 
Owing to the linear independence to the N eigenvectors, a non-singular matrix B with complex 
coefficients exists, defined by 

U = AU + f, 

AB = BA, ( 104 
with A = diag(I,, . . . , A,) and I1,. . . , I, the eigenvalues of A. The differential equation and also its 
discretized approximation is called stable when a finite error c0 in the initial condition uo results 
in a finite error ~ ( t )  in u(t), for any t. To evaluate this error propagation two cases are considered 

(1) u is a solution of (9a) with u(to) = uo 
(2) $ is a solution of (9a) with $(to) = uo + c0 

with so a small perturbation of uo. 

If E is defined as E = 6 - u then 6 = AE and &(to) = z0 or, since B is non-singular, q = B -  ' E  can 
be defined and thus 

.il= Aq, ( 1 Ob) 
with 

q( to )  = B- ' g o  = qo. 

The solution of (lob) then can be written as 
qi = qiOeAf(t-'o), i = 1,. . . , N .  

In order that the differential equation is stable, qi must be a non-increasing function of time; hence 

Re[Ai] < 0 (12) 
must hold for any i(i = 1,. . . , N ) .  

Numerical time integration schemes generally lead to equations for q of the form 

q"+' = Q", (13) 
with G the so-called multiplication matrix and q" = q(t.). For stability of the numerical scheme 
it is necessary that 11 G 11 < 1 (with )I G 11 any regular vector norm). For the &method one easily 
verifies that this leads to 

1 + (1 - 8)IiAt 
1 - 8AiAt 

<1,  i = l ,  ..., N. l c i l=  

In Figure 2 the stability regions of I i A t  are given for the interval 0 < 8 < 1. For 0.5 < 0 < 1 the 
scheme appears to be stable for all IAt .  For 0 < 8 < 0 5  the scheme is only conditionally stable. 
In the case that the eigenvalues of A are large (but negative), relatively small time steps At have 
to be applied to ensure stability. 
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Figure 2. Stability regions of the 0-method for complex and real eigenvalues, respectively 
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Figure 3. Amplification factor c as a function of @At) for the EI (a) and the CN (b) methods for complex and real 
eigenvalues, respectively 
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In Figures 3(a) and 3(b), the amplification factor ci is plotted as function of Re[AAt] for 8 = 1 
and 8 = 0 5 ,  respectively. From these Figures it can be observed that for 8 = 0 5  (CN) the 
amplification tends to - 1 for large negative eigenvalues, whereas for 8 = 1 (EI) the amplification 
tends to 0. To indicate whether one &value is preferable to another, the eigenvalues of the 
system to be solved have to be known. In the case of large negative and real eigenvalues, 
computational errors or errors in the initial condition damp very slowly for the CN-scheme and 
will produce an oscillatory behaviour because the amplification factor tends to - 1. On the 
contrary, these errors will be damped very fast by the EI-method. However, in the case when 
A is a non-symmetric matrix, the eigenvalues will also have an imaginary part, and will drift 
into the complex plane. The situation with complex eigenvalues is more complicated, since for 
a dominating imaginary part of the eigenvalues, oscillations are inherent to the solution. From 
Figure 3 it is seen that if At is too large, the EI method will also damp these oscillations. However, 
for complex eigenvalues with a dominating real part, the behaviour of the time integration is 
similar to the behaviour in the situation with real eigenvalues. 

PENALTY FUNCTION APPROACH 

Application of the &method of time integration on (4) gives 

{ M + 8At[S + N(u"+~)]}u"+~ + 8AtLTp"+' 
= At(f"+' + b"+e) + { M - (1 - 8)AtCS + N(u")]}u" - (1 - 8)AtLTp", (15a) 

LU"+ = 0. (15b) 
The direct solution of the set of. equations (1 5 )  is time and memory consuming. This is caused 
by the fact that zero components appear on the principal diagonal of the coefficient matrix, 
owing to the absence of the pressure in the continuity equation. Therefore a partial pivoting 
procedure is necessary, which disturbs the band structure of the matrix. To overcome this 
difficulty, the penalty function method is applied. To that end the continuity equation is perturbed 
and replaced by 

where E is a small parameter. Reddy" showed that for the steady Stokes equations the error 
due to this perturbation is of O(E), whereas for the Navier-Stokes equations the error is at most 
of O ( E ' / ~ ) .  However, his numerical experiments showed a convergence behaviour of order E in 
both cases. The main advantage of the penalty method over the direct solution of (15) is that 
the pressure is eliminated from the momentum equations, resulting in a smaller set of equations 
that can be solved without pivoting procedures. The pressure can then be obtained, after solving 
the perturbed momentum equations, by simple matrix-vector multiplication, i.e. 

{ M + ~ A ~ [ S + N ( U " + ~ ) + ~ L ~ M , L ] } U " + ~  1 

1 
= At(f"+'+ b"+') + { M  - (1 - 8)AtL-S + N(u") + -LTM,L]}u", 

& 
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M,(k,l)= +k+ldR, k , 1 = 1 ,  ..., M. I* 
This set of non-linear equations is solved by one step of a Newton-Raphson method, leading to 

{M+0At[S+ J(u")+-LTM,L E u"+' 11 
= At(f"+' + b"+e) + 

- (1 - 28)AtN(u")u", (1W 

p n + l  = -M,LU"+~, 1 
E 

with J(u") the Jacobian matrix of N(u"). For stationary equations the following Newton-Raphson 
iteration can be used: 

u ' + ' = ~ + ~ + N ( u ' ) u ' ,  v = O ,  ..., v,, 

( 19b) 
p ' m + l  = -MMpLuVrn+1. 1 

E 

The iteration can be stopped when 11 uv+ - uv 11 < 6, 6 being the required accuracy. 

STABILITY AND ACCURACY O F  THE TIME INTEGRATION 

The stability and accuracy of the time integration methods described are elucidated by 
computations of oscillating flow in a channel (two parallel plates) and the vortex shedding past 
a cylinder. The oscillating channel flow is chosen because an exact solution can be derived. 
Moreover, this flow problem is of physiological interest to the analysis of blood flow in arteries 
(the premise of our research). The non-linear convective terms are neglected, and only real 
eigenvalues occur. To obtain an idea of the influence of an imaginary part of the eigenvalues 
on the behaviour of the time integration, the vortex shedding phenomenon is also analysed. 
Then the convective terms do play an important role. 

Fully developed oscillating flow between two parallel plates 

To elucidate the stability and accuracy of the time integrations used, the development from 
rest of oscillating flow between two parallel plates was analysed. For convenience an oscillating 
parabolic velocity profile was used as the in-stream condition (see Figure 4). 

Another way to analyse the fully developed oscillating channel flow is to use an oscillatory 
normal stress at the in-stream instead of the Dirichlet conditions used here. Then only one 
element in the x-direction is needed since the pressure only varies linearly and the velocity does 
not change at all in that direction. However, this has two important disadvantages compared 
with the Dirichlet boundary conditions. First, the pressure is then found to be independent of 
the time step used. In fact the pressure is prescribed indirectly by the normal stresses. Secondly, 
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Y u=o,v=o 
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Figure 4. Geometry and boundary conditions for the oscillating channel flow problem ( L  = ISD), U ,  = parabolic profile 

a rather long transition of about 20 time cycles was found before the velocity was fully developed 
in time. The errors for the velocity were observed to be of the same order as in the problem 
with the Dirichlet boundary conditions. 

The exact solution of the fully developed flow can be determined in an analogous way to the 
fully developed oscillating flow in a circular cylinder” and is given by 

1 

with Qo the flow amplitude (Qo = %UoD), D the channel height, U o  the velocity amplitude, and 

u = DJ(w/v ) .  (2 1 4  
Re[. .] is the real part of [. .] and i = J( - 1). 

The solution is approximated by solving the unsteady Stokes equations for an angular frequency 
w = 211 [s-’1, a viscosity v = 3.5 x [m’s-’1 and a channel height D = 0.6 x 10-’[m]. This 
leads to a physiological value of the frequency parameter a % 8. The length of the channel was 
taken to be 15D. As the pressure derivative did not change in the first 3 significant decimals in 
the last and last but one element upstream of the outlet, the conclusion is justified that the 
assumed channel length is sufficient to guarantee a fully developed oscillating flow at the outlet. 
Comparison of numerical and analytical solutions is done for different 0-values in the time 
integration with time steps of 0.2,O.l and 0.05 times the cycle period of the flow (At = 0-2, At = 0.1, 
At = 0.05 s), respectively, and with the aid of the following error definitions 

x = 1 5 D ,  y = O .  
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Figure 5(a). Relative errors in the velocity and pressure gradients at the out stream for the EI method plotted as a function 
of time for At = 0.1 

t 

a 

-U0  

0 D/ 2 
Y 

Figure 5(b). Velocity profiles at the out stream for 4.0 < t C 4.8 (- :exact, x : At = 0.2, +:At  = 0.1,O: At = 0.05) for the EI 
method 
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Figure 5(c). Pressure gradients at the out stream for 4.0 < t < 5.0 (- :exact, x : At = 0.2, + : At = 0.1, 0: At = 0.05) for the 
EI method 
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Table I Time averaged relative errors in the velocity and the pressure gradient for the EI, CN and ISCN 
methods, respectively 

Method Euler implicit Crank-Nicolson CN with implicit start 

At Au APX Au APX Au APX 

0.20 016 2.13 0.05 5.15 - - 

0.10 ' 0.09 1.01 003 4.19 0.02 0.57 
0.05 0.05 0.40 002 0.76 - - 

As expected from (14) the time integration was unstable for 0 < 8 < 03 for all time steps used. 
The large negative eigenvalues resulting from the penalty function method would require time 
steps of order E. Because 0-values in the range 0.5 < 8 < 1 are not expected to give better accuracy 
then the first order EI-method (8 = l), only the EI and CN time integration were analysed in detail. 

The Euler implicit scheme ( E l ) .  In Figure 5(a) the relative errors as defined in (22) are plotted 
against the time for the first five periods of the flow oscillation. The time step used was At = 0.1. 
Figures 5(b) and 5(c) show the velocity profiles and pressure gradient approximations in the fifth 
period for At = 0.2, At = 0.1 and At = 0.05, respectively, together with the exact solution. The 
corresponding errors were averaged in time and are given as functions of At in Table I. The large 
errors found for the pressure derivatives are attributed to the phase-lack between the exact and 
approximated solutions, as is visible in Figure 5(c). 

The Crank-Nicolson scheme ( C N ) .  The same analysis was performed for the case that the 
CN-scheme was used (Figures 6(a)-(c) and Table I). From these results it is concluded that the 
CN-scheme gives considerably better velocity approximations, but worse pressure approximat- 
ions. As can be seen from Figure 6(c), the poorer pressure approximations are the result of 
undamped oscillations. These oscillations are the consequence of the amplification factor tending 
to - 1 for high negative eigenvalues of the coefficient matrix. 

The Crank-Nicolson scheme with an implicit start ( I S C N ) .  Better results are obtained when 
the errors induced by the arbitrary initial value (U, = 0) are damped by an implicit start of the 
CN-scheme. In Figure 7 the results of the EI, the CN and the ISCN schemes are given (for 
averaged values see Table I). In the ISCN scheme the first period of the flow oscillation was 
integrated with the EI scheme. The results of the CN scheme are considerably improved when 
an implicit start is used to damp the errors induced by the assumed initial value. 

Although the errors found for the velocity approximation are acceptable, relatively large errors 
are found for the pressure. These large errors are partly due to the large time steps that are 
used, and they are partly caused by the phase-lack between exact and numerical solutions. 
Smaller time steps were not applied, as then a finer grid had to be used to ensure that the time 
integration errors were much larger then the errors caused by the space discretization. However, 
no other conclusions are expected and therefore the present results are regarded as giving a 
good picture of the time integration methods applied. 

Vortex shedding behind a circular cylinder 

To evaluate the behaviour of the two time integration methods in a more complicated flow 
situation, the vortex shedding behind a circular cylinder with a diameter D = 1 was simulated. 
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Figure 6(a). Relativeerrors in the velocity and pressure gradients at the out stream for the CN method plotted as a function 
of time for At = 0.1 
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Figure 6(b). Velocity profiles at the out stream for 4.0 < t < 4.8 (- : exact, x : At = 0.2, + : At = 0.1, 0:  At = 0.05) for the 
CN method 
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Figure 6(c). Pressure gradients at the out stream for 4.0 < t < 5.0 (- : exact, x : At = 0.2, + : At = 0. I ,  0:  Af = 0.05) for the 
CN method 
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Figure 7(a). Relative errors in the velocity at the out stream for the EI(O), CN( x ) and the ISCN( -), respectively, for At 
= 0.1 
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Figure 7(b). Relative errors in the pressure gradient at the out stream for the EI(O), CN( x )and the ISCN( -), respectively, 
for Ar = 0.1 
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Figure 7(c). Pressure gradients in the last period at the out stream for the El( x ), CN( +), ISCN( o), respectively, for 
At = 0.1 
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The geometry was choosen equal to the geometry used by Gresho et aL5 and is shown in 
Figure 8(a). Uniform Dirichlet inflow boundary conditions (u = U ,  = 1, u = 0) and stress-free 
outflow conditions were used, together with moving wall conditions (u = 1, u = 0) at the upper 
and lower walls. Both the Euler implicit and the Crank-Nicolson time integration methods 
arrived at a steady solution after about 30 time steps of At = 1. Owing to the symmetry of the 
mesh and boundary conditions, the vortex shedding was not generated spontaneously. To trigger 
the vortex shedding, the steady solution was disturbed in one time step by setting the velocity 
of the cylinder to 0.1 in the y-direction. Next, 10 EI time steps were performed to damp this 
distortion and to avoid hereby a too important influence on the flow field. After these implicit 
steps both integration schemes were applied with times steps At = 1, resulting in a periodic 
shedding cycle as shown in Figure 8(b), where the velocity component in the y-direction at 
(x, y) = (10,O) is plotted as a function of time. With the EI time integration the amplitude of the 
velocity component turns out to be an order smaller in magnitude than when the CN scheme 
was used. Furthermore, the amplitude damps rapidly for increasing time. In Figure 8(c) this 
velocity component is given for the CN method. The amplitude of these fluctuations agrees with 
the amplitude found by Gresho et aL5 The Strouhal number ( f D / U , )  of the vortex shedding is 
predicted to be 0.17. Experiments by Tritton6 showed a Strouhal number of 0.16 for Re = 100. 
The performances of the EI scheme are expected to be better at smaller time steps. Anyhow, it 
can be concluded that, although the EI time integration has its advantages with respect to the 
numerical stability of the solution, this first-order scheme is far less applicable than the CN 
scheme in simulations of flows with an important convective property, such as the vortex shedding 
process. 

CONCLUDING REMARKS 

The behaviour of the Euler implicit and Crank-Nicolson time integration schemes for the 
unsteady Stokes equations using a penalty finite element method can be explained by a simple 
stability analysis of linear parabolic differential equations in general. In that case, the performances 
of the integration methods for eigenvalues of the system of equations with a large negative real 
part are important with respect to possible numerical oscillations of the solution. The first order 
EI algorithm has an amplification factor approaching zero when the real part of the eigenvalue 
goes to minus infinity. Therefore errors induced by the computation or errors due to the initial 
condition (often a steep velocity gradient in time) damp very quickly. Contrarily, the more 
accurate second order Crank-Nicolson rule gives rise to an amplification factor tending to - 1, 
and therefore an oscillatory propagation of the introduced errors is expected. This phenomenon 
is illustrated by the analysis of the oscillating channel flow and is mainly visible in the poorer 
pressure approximations. If the disturbance of the initial value is damped out by a fully implicit 
time integration, the pressure oscillations observed, for the (smooth) boundary conditions used 
here, were reduced significantly. Finally it is assumed that the stability properties are thought 
to be affected mostly by the penalty parameter. The non-linear convective terms give rise to 
complex eigenvalues. These are not expected to lead to much different stability properties. 
However, the physically originated oscillatory properties of the solution of the differential 
equations can be damped incorrectly by the EI scheme. The CN method with an implicit start 
is preferable then. This statement is confirmed by the computation of the vortex shedding behind 
a circular cylinder. 
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Figure 8(a). Geometry, mesh and boundary conditions for the vortex shedding computation 
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Figure 8(b). Velocity component in y-direction as a function of time: distortion at t = Is, 0 < t < 10 (EI, At = I), 
t >  10 ( A :  EI, A t =  1, 0: CN, A t =  1) 
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Figure 8(c). Velocity component in y-direction as a function of time: distortion at t = 1, 0 < t < 10 (EI, At = I), 
10 < t < 40 (CN, At = I), 40 < t < 55 (CN, At = 0.5), 55 < t < 85 (CN, At = 0.25) 
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Figure 8(d). Streamline pattern during a shedding cycle (time difference 1 s) 

APPENDIX 

To eliminate the pressure gradients and velocities at the centroid, equations (4) are split into 

T+6 [ gM" ;,,I[ f.l + [ f:: :::I[ :I+ [ E!: Z:][  :] = [ f, + bJ 
(23a) 

[ E:: E:j[ 8J = [ 3 
with K = S + N(u). The velocity u is split into a part Q containing the velocities at the vertices 
and the midpoints of the sides of the elements, and a part u, containing the velocities at the 
centroid. The pressure parameters are split into a part pc containing the pressure at the centroids 
of the elements and a part pv, containing the pressurederivatives at the centroids. The elimination 
of the centroid velocities can be performed with the aid of the second part of the continuity 
equation: 

U, = - L;; Lz1 Q ROQ, (24) 
with Ro a 2M x (2N - 2M) square matrix. The inverse of L,, can easily be obtained element 
by element because of the discontinuity of the basis functions t,bk. Since qi7 vanishes on the element 
boundary the element matrix Liz reads 
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Furthermore it can be proved that LIZ = 0, since 

= 0. 

Pre-multiplication on (23a) by [I: R@ with I, a (2N - 2M) x ( 2 N  - 2M) unity matrix, and 
substitution of (24) leads to 

A % + R i i + € T p , = f + f i ,  
€; = 0, 

with 

A = A,, + R;fAzl + A,,R, + R:Az2Ro, A = M,K, 

f;=L11, 

e = [I: R;f]c, c = f, b, U. 

The velocity and pressure derivatives at the centroids are then given by 

U, = Roe, 

pv=(L:z)-’Lf, - MZ,R,% - (Kz1 + KzzRo)ii]. (28) 

In this way the number of unknowns per element is reduced to 13. The pressure derivatives and 
velocities at  the centroid can be derived by simple matrix-vector multiplications (equation (28)). 
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